
Universal second-order logic

It is beyond the scope of this text to show that reachability can also be expressed in existential

second-order logic, but this is indeed the case. It is an important open problem to determine

whether existential second-order logic is closed under negation, i.e. whether for all such formulas

∃P φ there is a formula ∃Q ψ of existential second-order logic such that the latter is semantically

equivalent to the negation of the former. If we allow existential and universal quantifiers to apply

to predicate symbols in the same formula, we arrive at fully-fledged second-order logic, e.g

If one wants to quantify over relations of relations, one gets third-order logic etc. Higher-order

logics require great care in their design. Typical results such as completeness and compactness

may quickly fail to hold. Even worse, a naive higher-order logic may be inconsistent at the meta-

level. Related problems were discovered in naive set theory, e.g. in the attempt to define the ‘set’

A that contains as elements those sets X that do not contain themselves as an element:

Micromodels of software

Two of the central concepts developed so far are

 model checking: given a formula φ of predicate logic and a matching model M determine

whether M φ holds;

 semantic entailment: given a set of formulas Γ of predicate logic, is Γ φ valid?

In the case of semantic entailment, Γ should contain all the requirements we impose on a software

design and φ may be a property we think should hold in any implementation that meets the

requirements Γ. Semantic entailment therefore matches well with software specification and

validation; alas, it is undecidable in general. Since model checking is decidable, why not put all

the requirements into a model M and then check M φ? The difficulty with this approach is that,

by comitting to a particular model M, we are comitting to a lot of detail which doesn’t form part

of the requirements. Typically, the model instantiates a number of parameters which were left free

in the requirements. From this point of view, semantic entailment is better, because it allows a

variety of models with a variety of different values for those parameters. We seek to combine

semantic entailment and model checking in a way which attempts to give us the advantages of

both. We will extract from the requirements a relatively small number of small models, and check

that they satisfy the property φ to be proved. This satisfaction checking has the tractability of model

checking, while the fact that we range over a set of models (albeit a small one) allows us to consider

different values of parameters which are not set in the requirements. This approach is implemented

in a tool called Alloy, due to D. Jackson. The models we consider are what he calls ‘micromodels’

of software.

